d-dimensional array

February 17, 2012

All symbols stand for nonnegative integers.
Let $\left(n_{1}, n_{2}, \ldots, n_{d}\right)$ be the dimensions of the array, size of the array is $N=$ $n_{1} n_{2} \ldots n_{d}$ elements.

An element of the array has index $\left(i_{1}, i_{2}, \ldots, i_{d}\right), 0 \leq i_{k}<n_{k}, 1 \leq k \leq d$.
Elements of the array are stored in the memory in the lexicographic order: $\left(i_{1}, i_{2}, \ldots, i_{d}\right) \leq\left(j_{1}, j_{2}, \ldots, j_{d}\right)$ if and only if $i_{k} \leq j_{k}$ for some $k, 1 \leq k \leq d$ and $i_{l}=j_{l}$ for $l>k$, and the position of the element with index $\left(i_{1}, i_{2}, \ldots, i_{d}\right)$ is $m\left(i_{1}, i_{2}, \ldots, i_{d}\right)=i_{1}+n_{1}\left(i_{2}+n_{2}\left(i_{3} \ldots n_{d-1} i_{d}\right) \ldots\right)$.

Let $0 \leq k \leq d:$ i) the set of the elements with indices $\left(i_{1}, i_{2}, \ldots, i_{d}\right)$ such that $0 \leq i_{k}<n_{k}, i_{l}$ fixed for $l \neq k$, is called row. ii) the set of the elements with indices $\left(i_{1}, i_{2}, \ldots, i_{d}\right)$ such that i_{k} fixed, $0 \leq i_{l}<n_{l}$ for $l \neq k$, is called slice.

Hence row is a 1 -dimensional orthogonal section of the array, slice is a $d-1$-dimensional orthogonal section of the array.

How to traverse row: for $(i=0 ; i<n u m ; i++)$
// process element with position first $+i \cdot$ step
where
first $=m\left(i_{1}, i_{2}, \ldots, i_{d}\right)$ with $i_{k}=0$, step $=n_{1} n_{2} \ldots n_{k-1}$, num $=n_{k}$

How to traverse slice: for $($ ind $=$ first; ind $<$ totnum; ind $+=$ step $)$
// process contiguous interval of elements of length runlen starting at position ind
where
first $=n_{1} n_{2} \ldots n_{k-1} i_{k}$, runlen $=n_{1} n_{2} \ldots n_{k-1}$, step $=n_{1} n_{2} \ldots n_{k}$, num $=$ $n_{1} n_{2} \ldots n_{k-1} n_{k+1} \ldots n_{d}$, totnum $=$ num \cdot step

Traversing all rows in the $k^{\text {th }}$-direction: iterate first in the row traversal algorithm over slice with $i_{k}=0$.

Traversing all rows in all directions: iterate k over all dimensions.

