d-dimensional array

February 17, 2012

All symbols stand for nonnegative integers.

Let (n_1, n_2, \ldots, n_d) be the dimensions of the array, size of the array is $N = n_1 n_2 \ldots n_d$ elements.

An element of the array has index $(i_1, i_2, \ldots, i_d), 0 \le i_k < n_k, 1 \le k \le d$.

Elements of the array are stored in the memory in the lexicographic order: $(i_1, i_2, ..., i_d) \leq (j_1, j_2, ..., j_d)$ if and only if $i_k \leq j_k$ for some $k, 1 \leq k \leq d$ and $i_l = j_l$ for l > k, and the position of the element with index $(i_1, i_2, ..., i_d)$ is $m(i_1, i_2, ..., i_d) = i_1 + n_1 (i_2 + n_2 (i_3 ... n_{d-1} i_d) ...)$.

Let $0 \le k \le d$: i) the set of the elements with indices (i_1, i_2, \ldots, i_d) such that $0 \le i_k < n_k, i_l$ fixed for $l \ne k$, is called row. ii) the set of the elements with indices (i_1, i_2, \ldots, i_d) such that i_k fixed, $0 \le i_l < n_l$ for $l \ne k$, is called slice.

Hence row is a 1-dimensional orthogonal section of the array, slice is a d-1-dimensional orthogonal section of the array.

How to traverse row: for(i = 0; i < num; i + +)// process element with position $first + i \cdot step$ where $first = m(i_1, i_2, ..., i_d)$ with $i_k = 0$, $step = n_1n_2 \dots n_{k-1}$, $num = n_k$

How to traverse slice: for(ind = first; ind < totnum; ind + = step)

// process contiguous interval of elements of length runlen starting at position ind

where

 $first = n_1 n_2 \dots n_{k-1} i_k, runlen = n_1 n_2 \dots n_{k-1}, step = n_1 n_2 \dots n_k, num = n_1 n_2 \dots n_{k-1} n_{k+1} \dots n_d, totnum = num \cdot step$

Traversing all rows in the k^{th} -direction: iterate *first* in the row traversal algorithm over slice with $i_k = 0$.

Traversing all rows in all directions: iterate k over all dimensions.