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1 Introduction 

Distance transformation is an operation with a lot of applications in image processing and 
in analysis of spatial patterns. Special distance transformations, e.g. chamfer or city block 
distance, can be calculated especially easily by a sequential double scan algorithm [3,9]. 
The same algorithm can be used for the calculation of the lower Lipschitz cover of a 
grayscale image [7] that is equivalent to a grayscale opening by a cone [4]. The Lipschitz 
cover can be applied for the elimination of a slowly varying image background by 
subtraction of the lower Lipschitz cover (a top-hat procedure). 

The distance is usually defined as a symmetric function that is positive for distinct 
points. If we relax these assumptions we obtain a function called quasi-distance that can 
be useful to model e.g. directional positional relations in images [1], or real situations like 
uphill and downhill paths. We will show that the quasi-distance can also be calculated by 
the double scan algorithm. Moreover, the notion of quasi-distance can simplify 
description and validation of the double scan algorithm that inherently contains the 
measurements of the quasi-distance to the preceding image elements during the scan. 

2 Chamfer quasi-distance in digital images 

The elements of the n-dimensional digital image are arranged in a regular lattice and they 
can be indexed by n

Z . 
The digital image is a function { }+!!"#$ ,: RXf , where n

X Z! . The binary 
image is a digital image with range in{ }1,0 .  

Definition 2.1: Chamfer mask M  is a digital image with a finite domain ( )MD  such 
that 0!M  and ( ) 0=0M . 

The path from x to y, Xyx !, is a sequence of vectors )(,..,, 21 MD
m
!"""  such that 
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Chamfer quasi-distance between Xyx !, , n
X Z! , is 
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where sequence of vectors )(,..,, 21 MD
m
!"""  is path v  from x to y.  

The chamfer quasi-distance, defined in (1) fulfills ( ) 0=x,xd
M

, ( ) 0!y,xdM , 
( ) ( ) ( )zxdzydyxd MM ,,, !+ . Related chamfer quasi-norm ( ) ( )0,xdxn

MM
=  is positively 

homogeneous ( ) ( )xanaxn
MM

=  for Z!a , 0!a . 
The notion of quasi-distance is more general than notion of distance:  
a) d is symmetric, i.e. ( ) ( )xydyxd MM ,, =  iff M  is symmetric: ( )xMxM !=)( .  
b) ( ) 0=y,xdM  does not imply yx !  iff there is 0!x  such that 0)( =xM .  
c) ( )y,xdM  attains infinite value for yx,  that can not be connected by vectors from 
( )MD . 

Definition 2.2: Let n
Zy,x ! . Then yx L<  lexicographically iff there is nj !!0  such 

that jj
yx <  and kk yx =  for jk > . Let us define the two intervals bounded by 0 from one 

side { }0ZZ
L

nn
xx <!="
, , { }0ZZ

L

nn
xx >!=+
, . 

Definition 2.3: Let f  be a function and let d  be a quasi-distance on ( )fD , then f  is 
d -Lipschitz function with respect to d iff for every y,x  from ( )fD   

( ) ( ) ( )yxdyfxf ,!" .       (2) 

Let f  be a function. Then the greatest d -Lipschitz function ( ) ( ) ( )yxdyfxf ,!"  is 
called the lower d -Lipschitz cover of f. Lipschitz condition (2) represents continuity in 
discrete spaces. 

3 Chamfer distance transformation algorithms in 2D 

The distance transformation converts a binary digital image into a gray-level image with 
pixels having value of the distance to the nearest feature. It can be achieved using only 
local operations of a small neighborhood of a pixel.  The chamfer distance transformation 
of a binary image can be computed either by a sequential algorithm or by a parallel 
algorithm.  

In next section we assume 2
Z!X . Then we can denote a pixel of the image as 

),(, jifa ji = . Computing algorithms for the chamfer distance transformation in arbitrary 
dimensions are very similar and you can find them in [2]. 

The parallel algorithm uses a parallel chamfer mask (Fig.1) and is defined by the 
recurrent relation 
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jia    ( ) )}(,),(|)(inf{ 21, 21
fDujuiMDuuMak ujui !++!+++ ,  

where u is a vector,  ),( 21 uuu = , m is the width of the image, n is the height of the image, 
},..,1{},,..,1{ njmi !! .  

Algorithm stops on fixpoint, it means if k
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k

ji aa
,
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,
=

+  for all i,j. 
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We used in (3) the value m+n that represents the infinity in the algorithm, because 
any real distance in the image is less than m+n.  

 

 
Fig. 1: 3 x 3 chamfer masks: a) parallel chamfer M, b) forward sequential !

M , 
c) backward sequential +

M . 
 
The sequential algorithm presented in [8] has two steps: forward and backward scan. 

Both of these scans use its own chamfer masks !
M and +

M  (Fig.1), with the signs in the 
sense of lexicographical order, defined in 2.2. The coefficients 

1
c  and 

2
c  represent the 

gradient step in horizontal and vertical directions and in diagonal direction, respectively. 
Usually 2,1

21
== cc  or if we require that these values are natural numbers, 3,2

21
== cc . 

A more precise calculation also with larger chamfer masks is possible to find in [6].    
The first forward scan (with output matrix )( 1

, jia ) begins from the upper left corner of 
the image and scans the rows all over the image to the bottom right corner. The second 
backward scan (with output matrix ( 2

, ji
a )) has the opposite direction of the scanning from 

the bottom right corner to the upper left corner: 
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In the computation of the value of 1

, ji
a we use the value of 1

, 21 ujui
a ++ , but we already 

have these values from previous computation for all )( +
! MDu , because 0

L
u < . 

Analogous situation is in the second backward scan. 
 
This algorithm can be easily extended for the calculation of the lower d-Lipschitz 

cover of a grayscale image [7]: 
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where slope is a parameter controlling gradient in the resulting image. 
A similar algorithm computes the upper d-Lipschitz cover: 

( ) )}(,},0{\)(|)({}sup{ 21
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The Lipschitz cover is a very useful tool for the elimination of a slowly varying image 
background. There are some examples in the figures (Fig.2, Fig.3).  

In 24-bit (or 32-bit) colored pictures the same algorithm is used for every color 
channel. 

 
 

 
 

Fig. 2: An original microscopic image (on the left), the Lipschitz lower cover (in the 
middle) and the image after using a Lipschitz top-hat filter (on the right). 
 
 

 
 

Fig. 3: An original electron-microscopic image of immunogold labels (on the left), the 
Lipschitz lower cover (in the middle) and the image after using a Lipschitz top-hat filter (on 
the right). 

4 Chamfer distance in digital image of arbitrary dimension 

Now we will assume that n
X Z! , n > 0. It can be proved that the lower d -Lipschitz 

cover of f  is 

     ( )
( )

( ) ( )( )yxdyfxg
fDy

,inf +=
!

.      (4) 

The sequential algorithm for the distance transformation scans the image elements in 
the lexicographic order calculating the lower +

M
d -Lipschitz cover h  of the image f  

taking the minimum of ( ) ( )yMyxh +++  for ( )fDyx !+ , ( )+! MDy , 0Ly <  and of 
( )xf  in the first step and then scans the image elements in the anti-lexicographic order 

calculating lower !
M
d -Lipschitz cover g  of the image h , taking minimum of 

( ) ( )yMyxg
!++  for ( )fDyx !+ , ( )+! MDy , 0Ly <  and of ( )xh  in the second step. 
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According to the following theorem the result of the double scan algorithm is the lower 
chamfer quasi-distance Lipschitz cover of the digital image. 
Theorem 4.1 : Let f  be an image and M  a chamfer mask. Let +

M  and !
M  be chamfer 

masks such that ( )xM)x(M =+  if 0
L

x <  and )x(M +  is not defined if 0
L

x > ,  
( )xM)x(M =!  if 0

L
x >  and )x(M !  is not defined if 0

L
x < . A lower 

M
d -Lipschitz 

cover of f  is a lower !
M
d -Lipschitz cover of a lower +

M
d -Lipschitz cover of f . 

Proof: Let g be a lower 
M
d -Lipschitz cover of f , then ( ) ( ) ( )( )yxdyfxg M

y
,inf += . The 

path { }
k

!  (4) minimizing ( )
{ }

( )!
=

=
m

k

kM Myxd
k 1

inf, "
"

 can be partitioned between +n
Z  and 

!n
Z :  

( ) ( ) ( )!!
=

"

=

+ +=
m

k

k

m

k

kM MMy,xd
11

##  

and the statement of the theorem follows from 
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Proposition 4.2: Let d  be a quasi-distance. The distance transformation of a binary 
digital image b  is an image 

d,b
DT  such that ( ) ( )bDDTD

d,b
= ,  

( )
( )

( )yxdxDT
yb

db ,inf
0

,
=

= .  

It is easy to see that 
d,b

DT  is a lower d -Lipschitz cover of the function bg o , ( ) 00 =g , 
( ) 11 =g . Then by the theorem 4.1 the double scan algorithm calculates also the chamfer 

quasi-distance transformation of the binary image. 

5 Conclusion 

The chamfer distance relatively well approximates the Euclidean distance and is widely 
used because of its relatively small computational requirements as it imposes only 2 
scans of the n-dimensional image independently of the dimension of the image. A more 
precise approximation [5] requires 2n scans in n-dimensional image, hence for n > 2 the 
algorithms for Euclidean distance transformation that are separable in dimension and 
require n-scans are preferable [4]. 
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