
MEASUREMENT OF LENGTH AND EULER 
CHARACTERISTIC IN 3D IMAGES 

JIŘÍ JANÁČEK*, IVAN SAXL** 

*Institute of Physiology, ASCR, Praha, Czech Republic (janacek@biomed.cas.cz), 
**Mathematical Institute, ASCR, Praha, Czech Republic (saxl@math.cas.cz) 

Abstract Efficient procedures for automatic measurements of length and Euler 
characteristic in 3D images are presented. The effect of background noise on the 
measurement of length and Euler characteristic of a fibrous structure is 
estimated. 
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1 Introduction 

The aim of the paper is a simple and efficient implementation of measurements in 3D 
binary image. Wrong segmentation or insufficient image resolution, anisotropy of the 
measured structure and contamination by image noise artefacts may bias results of the 
measurements of a real sample. We will discuss the precision of estimates of length of 
anisotropic structures in order to design estimators of length more robust with respect to 
the anisotropy bias. The effect of contamination of the image by noise artefacts will be 
estimated using geometry of Gaussian random fields. 

2 Methods 

2.1 Intrinsic volumes 

The intrinsic volume [7] can be defined for a convex set C in Rd as the integral of a 
j-dimensional measure of its j-dimensional projection averaged over all possible 
projection directions (the generalized Cauchy formula). The intrinsic volume of a union 
of convex sets is defined additively. The intrinsic volume is monotone, additive, motion 
invariant and homogeneous of order j and is normalised so that the following relations to 
the Lebesgue measure λd, the Hausdorff measure H and the Euler characteristic χ hold: 
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In 2D, V2(C) = S(C) is the area of C and 2V1(C) = p(C) is the perimeter of C. In 3D, 

2V2(C) = S(C) is the surface area of C and V1(C) = L(C) is the “length” (in fact, twice the 
mean width) of C. 

Crofton relation holds for sections of C by k-flats Fk=Lk+x (  is the linear 
(d-k)-subspace orthogonal to the linear k-subspace Lk and Gdk is the Grassmann 
manifold): 
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where dκ  is the d-dimensional volume of a unit ball in d-dimensional space Rd. 
Important values of the coefficient are c201 = 2/π in 2D and c302 = c301 = 1/2 in 3D. 

2.2 Systematic sampling of directions in the Crofton relation 

The Crofton relation makes possible to estimate length of an object C by an isotropic 
random choice of the direction in Rd and formula 
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where  corresponds to the chosen direction. Let us call the integral in the above 
formula the (total) projection of C onto [6]. The precision of the estimator may be 
poor if we measure strongly anisotropic objects. Selecting the directions in a systematic 
way and combining the information from the partial estimators to the single estimator by 
taking their (weighted) average we can substantially decrease the variance of the 
estimator by antithetic effect [4]. The variance of the systematic estimator of the length of 
a line segment in the d-dimensional space can be calculated from the correlation 
coefficient of the projections into two directions with angle ψ: 
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[1]. The coefficient of variation (CV) of the estimates using a single isotropically 
randomly oriented direction may be as high as 31  ≅ 0.58 in 3D. If we use the average 
of estimates with three perpendicular directions in 3D, the CV is at most 

3516 −π  ≅ 0.102. The CV for the rose of directions of normals to unbounded 
cylindrical surface that is approximately 0.037 according to [4] has the exact value  
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as we calculated using the identities between generalized hypergeometric functions. 
Weights wi of the estimator with the minimal value of variation coefficient for a set of 

directions and an actual object with isotropic random orientation can be calculated using 
the inverse C -1 = D = (dij) of the covariance matrix C = (cij) of the object projections: 
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[2]. A sufficiently general choice of the object is the line segment, as it represents the 
worst case from the point of view of variance of the estimator and as it allows an explicit 
calculation of the covariances of the projections (2). 

2.3 Estimates of the length and of the Euler characteristics using binary images 

Digital images are the lattices of spatial elements (spels, i.e. pixels in 2D and voxels in 
3D) with assigned numbers or vectors. Binary image consists of spels with values 0 and 1 
indicating whether the spel belongs to the background or to the objects (foreground), 
respectively. If we want to use the images for estimation of the volume of objects under 
study we must know the spatial arrangement of spels (area or volume per spel). For 
estimation of the Euler characteristic of the objects by calculation of the Euler 
characteristic of the digitized objects we must define the adjacency (neighbouring 
relation) of the spels in the binary image and for estimation of the other intrinsic volumes 
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by a digital counterpart of the Crofton relation (1) we must select sets of principal digital 
affine subspaces with spel adjacencies [6].  

Let the spels of the Rd image be arranged in an orthogonal lattice with regular 
spacings s1, s2, …, sd (calibration constants) between the centres of spels in each 
dimension, and indexed by multiindices from the set {1,2,…,n1}× 
×{1,2,…,n2}×…×{1,2,…,nd} and let the spel adjacency be either 2d-adjacency 
(neighbouring spels are those that differ by one step in one coordinate only: 2-adjacency 
in 1D, 4-adjacency in 2D, 6-adjacency in 3D) or (3d-1)-adjacency (neighbouring spels 
differ at most by one step in each coordinate: 2-adjacency in 1D, 8-adjacency in 2D, 
26-adjacency in 3D). 

For example, there are two basic textural characteristics in 1D. The total length 
(1-dimensional volume) we calculate by multiplying the number the foreground spels by 
the calibration constant. The number 2χ̂  of intervals ( 2χ̂ denotes an estimator of χ, the 
Euler characteristic of the object under study) we calculate by counting the rightmost 
spels of the intervals (f is the function attributing the binary value to the spels, ∧ , ∨  and  
⎯ are the logical AND, OR and NOT, resp., and n stands for n1): 
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Alternatively the leftmost points can be counted, which yields 
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The two numbers are different if the value of just one of the boundary spels is 1, 
which can be corrected by subtracting the value of ( ) ( )( )nff −15.0  from the first formula 
and adding it to the second one. Similar boundary corrections can be applied to all the 
estimators used in this section to diminish their anisotropic behaviour. 

The d-dimensional volume occupied by the foreground spels can be calculated by 
adding their volumes. A formula for the Euler characteristic of binary images with 
orthogonal lattice in Rd can be defined by induction. This formula makes possible an 
efficient implementation of the measurement algorithm with the spels coded by the bits 
of integral data types and the formulas implemented with the bit shift and logical 
operators. We can start the definition from dimension 0, where the image has single 
binary spel and the connectivity is 0 or 1, equal to the spel value. Let  be the 
(d-1)-dimensional slice at the position i through the image. Then the Euler characteristic 
of the d-dimensional image can be calculated from the Euler characteristic of 
(d-1)-dimensional slices [5]: 
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The first induction step yields the 1D formulas (4a,b). The formulas for 4χ̂ , 8χ̂  in 2D 
and for 6χ̂ in 3D are equivalent to the currently used methods [3,6]. Calculations with 
other adjacencies in the orthogonal lattices, e.g. 6-adjacency in 2D (4-adjacency plus one 
of diagonal configurations), or calculations in nonorthogonal lattices as is triangular 
lattice in 2D [6] can also be easily implemented. 

The length in 3D can be estimated by digital version of the Crofton relations (1) using 
planar sections in three perpendicular principal directions: 
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where e.g. the 6-adjacent estimator is used for calculation of the 2D connectivity number 
in the parallel section planes. In the case of a highly anisotropic object or of an object 
with non-random orientation, e.g. aligned along the edges of the 3D image, it is 
preferable to estimate the length by weighted average of estimates using Euler 
characteristics of intersections of the object with the parallel planes defined by the triplets 
of the 26-neighbours (their normals are the directions connecting the neighbours of the 
dual grid). As the directions are not evenly distributed on the hemisphere in the case of an 
orthogonal lattice, especially if the lattice is not cubic, some weighting of the results from 
partial estimators, e.g. that one recommended in the formula (3), is important for the 
compensation of the effect of anisotropy. 
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2.4 Intrinsic volumes of Gaussian excursion sets 2.4 Intrinsic volumes of Gaussian excursion sets 

Smoothing the d-dimensional image with an uncorrelated Gaussian noise by the Gaussian 
kernel with standard deviation ρ results in the smooth Gaussian field with Gaussian 
covariance function R: 

Smoothing the d-dimensional image with an uncorrelated Gaussian noise by the Gaussian 
kernel with standard deviation ρ results in the smooth Gaussian field with Gaussian 
covariance function R: 
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where B0r is the ball of radius r centred in the origin. 
Then (with the notation Hn(t) for the Hermite function) [8] 
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2.5 Random geometric graph 
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Fig. 1: Realization of the random geometric graph (left), the segments are visualized as 
thin cylinders joined by balls. Projections of the Steiner body of the graph (right). 

 
The model was designed to generate structures resembling microscopic samples of blood 
capillaries in animal brain. The simulation window was 256 units wide, 256 units high 
and 128 units thick. In the first step the vertices of the graph were generated as points of 
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the simple sequentially inhibited random process (SSI) with distance of inhibition 15 
units, then the segments of length less than 30 units connecting the points were 
sequentially generated under conditions: a) number of segments adjacent to a vertex is 
less or equal to 3, b) the segments with a common vertex form an obtuse angle, c) the 
distance of the middle point of the segment from the points and the middle points of the 
already generated segments is greater than 10 units. The border with horizontal thickness 
64 units and the vertical thickness 32 units was removed. Finally the segments were 
contracted in the z-direction by factor 2. 

The image of a realization of the model is in Figure 1. The projections of the Steiner 
body of the segments were calculated as the Minkowski sums of the respective 
projections of the segments. 

3 Results 

3.1 Length and Euler characteristic 

100 realizations of the random graph, described in the section 2.5, were generated. The 
length was calculated by summation of lengths of the segments, the average length 
density was 6.68·10-3 with the standard deviation (SD) 2·10-4. The Euler characteristic 
was calculated as number of vertices of degree 1 minus the number of vertices of degree 
3 dividing the result by 2. The average Euler characteristic density was 1.03·10-5, 
SD = 7.1·10-6. 

The binary images of the graphs with voxels in unit cubic lattice were drawn and 
dilated by cubooctahedral structural element with 19 voxels. The Euler characteristic was 
estimated as the mean of the 6-connected estimate (5a) and the 26-connected estimate (5b) 
(the mean provides some boundary correction), the average bias of the estimated Euler 
characteristic density was  -7.6·10-8, SD = 4.64·10-6. The length was estimated by formula 
(6), the average bias of the estimated length density was –8.92·10-4, SD = 1·10-4.  

3.2 Measurements in presence of noise 

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01
30 40 50 60 70

0.7
1
1.5
2

 
1.E-09
1.E-08
1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02

20 25 30 35 40

0.7
1
1.5
2

 
Fig. 2: The length density (left, y-axe) and Euler characteristic density (right, y-axe) of  the 
excursion set U(128) of the Gaussian field with standard deviation (σ, x-axes) for various 
degree of smoothness (ρ) by formula (7). 

 
Let the realizations of the model described in Section 2.5 be drawn by thick lines with 
full contrast equal to 256 levels. Supposing the volume of the lines is negligible, we can 
see on the Figure 2, showing the graphs of length density and Euler characteristic density 
of the excursion set U(128) of Gaussian random fields, that for a moderate degree of 
smoothing ρ = 1 and acceptable bias 1·10-4 for the length measurement the maximal level 
of noise is about σ = 35, while for the Euler characteristic measurement with the same 
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degree of smoothing and acceptable bias 1·10-6 the maximal level of noise is about 
σ = 25. 

To confirm the validity of the predictions from the continuous model described in 2.4 
for discrete images the binary images of realizations of the random graphs were 
converted to floating point images with contrast 384, contaminated by uncorrelated noise 
with standard deviations 0, 105, 145, 185 and smoothed by Gaussian filter with standard 
deviation ρ = 1. These values were chosen empirically in order to obtain the discrete 
Gaussian random field with standard deviations σ = 0, 25, 35, 45 after smoothing by 
Gaussian filter with standard deviation ρ = 1.  

The average bias of length density measurement at noise with σ = 35 was 5.15·10-4, 
SD = 4·10-5, and 2.17·10-3, SD = 9.7·10-5 at σ = 45. The average bias of Euler 
characteristic density measurement at noise with σ = 25 was –1.5·10-6, SD = 2.3·10-6, and 
3.64·10-5, SD = 7.9·10-6, at σ = 35. 

4 Conclusion 

Measurement of Euler characteristic and length in 3D can be implemented using only bit-
shifts and logical operations on integers. The maximal level of noise in the source image 
that do not disturb measurement of length or Euler characteristic can be estimated from 
the theory of Gaussian random fields. The estimate of the Euler characteristic is more 
sensitive to the image noise. 
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