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ABSTRACT 

Errors of the volume and surface area estimators that use IUR spatial grids of 
points, lines and planes are calculated using geometric characteristics of the objects under 
study. Coefficients in trend terms of asymptotic formulae for variances of volume 
estimators that use simple orthogonal grids are calculated. The variance of surface area 
estimation using spatial grids of lines has two components, the variance due to orientation 
and the residual variance. Upper bounds of the component of the error of surface area 
estimator due to the orientation are calculated for various sets of directions of grid lines. 
Coefficients in trend terms of asymptotic formulae for residual variances of the surface 
area estimators using triple orthogonal spatial grids of lines are calculated.  
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INTRODUCTION  

Isotropic uniform random (IUR) periodic spatial grids consisting of points, lines or 
planes (Fig. 1) can be used for estimation of volume, surface area or length of solid objects 
(Cruz-Orive, 1997). Formulae for prediction of error of the estimators from the grid 
density and known geometrical properties of the object under study are useful for the 
design of efficient measurements. An example is the formula for prediction of the error of 
point counting method of area estimation in plane from the perimeter of the feature set 
(Gundersen and Jensen, 1987). 

 

 
Fig. 1. Simple spatial grids of points, lines and planes. 

The first part of the paper deals with the volume estimation by measurement of the 
intersection of the grid and the object. Formulae for the variance of the sphere volume 
estimation by a spatial grid of points (Kendall and Rankin, 1953) can be easily generalised 
to IUR oriented grids of lines and planes. The variance as the function of the grid spacing 
is the sum of the trend term and of the oscillating term (Matheron, 1965). The formula for 
the trend term can be used for arbitrary objects with known surface area. 



The surface area can be estimated from the number of intersections of an IUR grid 
and the surface (Sandau, 1987). The variance of a surface area estimator using an IUR 
spatial grid of lines can be decomposed to the component due to orientation (o) of the grid 
and to the residual component (Hahn and Sandau, 1989). 
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Counting the intersections of the surface and the spatial grid of lines is equivalent 
to projecting the surface to planes perpendicular to directions of the grid lines and then 
counting points of a planar grid inside the total projection. The component of variance due 
to the orientation of the grid is equal to the variance of the surface area estimator from the 
total projections based on the Cauchy formula and it depends on the anisotropy of the 
surface, on the rose of directions of normals to the surface (Appendix B). Using grids 
consisting of lines in more directions can decrease this component of variance.  Values of 
coefficient of error for flat objects, representing upper bounds for all objects, are calculated 
for various systematic sets of directions in the second part of the paper. Results can be 
used for a comparison of efficiency of measurements using either spatial grids of lines with 
the sets of directions or of measurements using projections of surface into these directions.  

The trend term of asymptotic approximation of the residual variance can be 
calculated for spheres and the result can be generalised to convex objects. Increasing the 
grid density decreases the residual variance. Calculation of coefficients in the trend term of 
estimators using triple orthogonal grids of lines is the aim of the third part of the paper. 

 

VOLUME ESTIMATION USING IUR SIMPLE SPATIAL GRIDS 

Volume of the object X can be estimated from k-dimensional measure of the part of 
a simple k-dimensional grid G (Fig. 1) contained inside the object: 

( ) ( )estV X X G uk
d k= ∩ −ν  

where d is dimension of the reference space, k is dimension of the grid and u the grid 
spacing. The formula for the trend term in asymptotic expansion of variance of volume 
estimator of the sphere BR in Rd using the simple k-dimensional grid  (Appendix A): 

( )( ) ( ) 1d
Rk,dR uBSCBestVvar +δ≅                                        ( 1 ) 

is valid  for arbitrary objects with finite surface area, because the trend term depends only 
on the value of the derivative of the geometric covariogram in 0 (Matheron, 1971). Values 
of some of the coefficients Cd,k calculated according to Appendix A (Tab.1) can be 
compared to values reported by other authors. C10, C21 and C32 are well known from 
transitive theory (Matheron, 1965). C20 and C21 can be found in Matern (1989). The value 
of C30 is slightly higher than that obtained by approximation after Matheron (1965, Cruz-
Orive 1989) equal to 0.0656 and is close to numerical estimates for ellipsoids 0.06646 - 
0.06684 calculated by Kellerer (Cruz-Orive 1989). The value of C40 : 0.06296 is also closer 
to the numerical estimate 0.0632 by Matern (1989) than approximation after Matheron 
(1965, Cruz-Orive 1989) equal to 0.0610. 



Tab. 1. Values of coefficients Cd,k, for estimation of d-dimensional volume in d-
dimensional reference space by the grid of dimension k (Formula 1). 

 

Rd / k 
space / grid of: 

0 
points 

1 
lines 

2 
planes 

line    ( R1 ) 0.08333 - - 
plane ( R2 ) 0.07284 0.01938 - 
space ( R3 ) 0.06665 0.02430 0.008727

 

ERROR OF SURFACE AREA ESTIMATE USING IUR SYSTEMATIC 
SAMPLING OF DIRECTIONS IN R3 

The surface area can be estimated as twice the mean area of a total projection of the 
surface (Cauchy formula). Systematic sampling of projection directions usually decreases 
variance of the estimator. In three dimensional space the three perpendicular directions 
(ortrip, Mattfeldt  et  al.,  1985, Sandau, 1987), main directions of the cubic lattice used in 
image analysis (Meyer, 1992, Fig 2), or the sets of normals to Platon solids (Moran, 1944) 
can be used. Exact upper bounds of variance of surface area estimation using different sets 
of directions were calculated according to formula in Appendix B. 

 

Fig. 2. Directions of 4-fold, 3-fold and 2-fold axes of cube. 

Tab. 2. Coefficient of error (CE) of the Cauchy formula for the estimation of the area of a 
flat surface in R3 by averaging areas of projections with equal coefficients: 

 
set of directions opt. n CE (CE1/CEn)2/n 

1 direction * 1 0.57735 1.0 
2 orthogonal * 2 0.30179 1.8 
4-fold axes of cube * 3 0.10163 10.8 
3-fold axes of cube * 4 0.07523 14.7 
normals to dodecahedron * 6 0.03962 35.4 
normals to icosahedron  10 0.02444 55.8 
2, 3 and 4-fold axes of cube  13 0.01778 81.1 



 

Tab. 3. CE of the Cauchy formula for a flat surface in R3 using main directions of cubic 
lattice (axes of cube) with corresponding coefficients obtained by optimisation: 

 

set of axes opt. n CE (CE1/CEn)2/n 4-fold 3-fold 2-fold axes 
3 and 4-fold * 7 0.03374 41.8 0.1374 0.1469 - 
2, 3 and 4-fold  13 0.01613 98.6 0.0934 0.0679 0.0746 

 
  
  

opt. n CE (CE1/CEn)2/n 
* 5 0.0604 18 
* 8 0.0298 47 
* 9 0.0253 58 
* 10 0.0211 75 
* 13 0.0153 109 

 
Tab. 4. CE of the Cauchy formula for a 
flat surface in R3 using optimised sets of 
directions 

 
The directions with least values of CE for given n in Tabs. 2-4 are marked by 

asterisks. Values for n = 2 and 3 are already known (Sandau, 1987). For n = 3, 4, 6, 7 the 
optimal solutions are highly symmetric. For n = 5 the directions form vertices of 
pentagonal antiprism. For n = 7 the directions of normals to the cubooctahedron with two 
different values of weights were found to be optimal. The optimal solutions with more than 
8 directions had dihedral symmetries and unequal weights. The optimisation (Tabs. 3, 4) 
was performed using the solver in MS Excel. 
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Fig. 3. Coefficient of error of the Cauchy formula for projections of flat surface into 
systematically chosen directions: mean value of simple random sampling of directions, 
equidistributed directions, sphere triangulations and main directions of cubic lattice. 

 
The coefficient of error of several roses of directions chosen from two infinite 

sequences tending to the uniform distribution was evaluated (Fig. 3). The equidistributed 
sequence was generated by using binary expansion of index of new point to generate its 
longitude and ternary expansion of index to generate the sine of its latitude (Freulon and 



Lantuejoul, 1993). The other sequence was formed by vertices of triangulation of a sphere, 
obtained by the subdivision of icosahedral triangulation with weights proportional to the 
sum of surfaces of adjacent triangles (geodesic polyhedra of R. Buckminster Fuller). The 
main difference between the two methods is that the first generates a regular point pattern 
in the rectangle and then it maps the pattern to the sphere, which results in partial loss of 
regularity, while the other generates the regular pattern directly on the sphere. 

RESIDUAL ERROR OF SURFACE AREA ESTIMATION USING IUR SPATIAL 
GRIDS OF LINES 
 

 

Fig. 4. Orthogonal triplets of fakir probes - spatial grid SG and optimised OTSFP. 
  
Two orthogonal triplets of linear probes were tested: spatial grid by Sandau - SG 

and halfway shifted orthogonal triple of fakir probes - OTSFP. Counting the intersections 
of the surface and the spatial grids is equivalent to projecting the surface to orthogonal 
planes and then counting points of quadratic grids inside the total projections. The trend 
term in the asymptotic expansion of residual component is proportional to the third power 
of grid spacing and average perimeter of total projection (Gundersen and Jensen, 1987, 
Hahn and Sandau, 1989). The mean perimeter of projection of convex body is proportional 
to the mean width of the body. The trend term of the variance of estimate of a convex body 
surface area is: 

( )( ) ( )var estS B C H B uG≅ 3                                                    ( 2 ) 

where u is grid spacing and H(B) is the mean width of object under study (Kubínová and 
Janáček, 1998, Appendix C). The result can be generalized to non-convex objects using 
total absolute curvature K3

1 of the object boundary instead of the mean width of the object 
(Baddeley, 1980), 2πH=K3

1 for convex objects. 
 

 

Tab. 5. Values of coefficients in (2) for 
triple grids of lines (Appendix C). 

 
Grid CG 
SG 1.8700 
OTSFP 0.7332 

 
 
It can be seen from data in Tab.5 that shifting of linear probes in spatial grid 

relatively to each other results in about 2.5 times higher efficiency of estimation of area of 
an isotropic surface. 



DISCUSSION 
Precision of volume estimators using simple orthogonal grids of either points, lines 

or planes in various reference spaces can now be compared through the values of the 
coefficients in the trend term of an asymptotic expansion of the variance of the volume 
estimators. Exact values of the coefficients are close to results of earlier numerical studies. 
Results also confirmed that precision of earlier approximations of those coefficients (Cruz-
Orive, 1989) based on transitive theory (Matheron, 1965) was sufficient for most practical 
purposes. 

Two sources of variance in surface area estimation using spatial grids were 
considered similarly as in the paper by Moran (1966) on the precision of a length estimator 
in the plane, the component due to orientation and the residual component.  

Our numerical results on component of variance due to orientation of the grid, the 
upper bounds for the estimators using various roses of projection directions, complete the 
earlier results on orthogonal triplet of directions (Sandau, 1987). The efficiency of 
systematic sampling of directions, calculated for completely anisotropic objects, increases 
with number of directions: while taking 3 orthogonal directions is better than 30 randomly 
chosen direction, 13 systematically chosen directions are better than 1000 random 
directions. 

The numerical results concern perfect anisotropy only and are usually too high for 
real objects with partial anisotropy. Results on partial anisotropy and projections into three 
orthogonal directions were obtained by simulation studies for ellipsoids (Hahn and Sandau, 
1989). 

The residual component of variance was calculated for triple orthogonal grids of 
lines. It is shown that optimization of spatial grid by adjusting position of the linear probes 
can dramatically influence the residual variance of the surface area estimator. 
Approximately the same residual variance as with the nonoptimized grid of Sandau (1987) 
can now be obtained using optimized grid with about 1.4 times greater step. 

 

REFERENCES 
Baddeley AJ. Absolute curvatures in integral geometry. Math Proc Camb Phil Soc 1980; 

88: 45-58. 
Cruz-Orive LM. Stereology of single objects. J Microsc 1997; 186: 93-107. 
Cruz-Orive LM. On the precision of systematic sampling. J Microsc 1989; 153: 315-333. 
Freulon X, Lantuejoul Ch. Revisiting the turning band method. Acta Stereol 1993; 12: 

163-168. 
Gundersen HJG, Jensen EB. The efficiency of systematic sampling in stereology and its 

prediction. J Microsc 1987; 147: 229-263. 
Hahn U, Sandau K. Precision of surface area estimation using spatial grids. Acta Stereol  

1989; 8: 425-430. 
Kendall DG. On the number of lattice points inside a random oval. Quarterly J Math 1948; 

19: 1-26. 
Kendall DG, Rankin RA. On the number of  points of a given lattice in  a random 

hypersphere.  Quart J Math (2) 1953; 4: 178-189. 
Kubínová   L, Janáček   J.  Estimating   surface  area  from arbitrarily oriented  thick slices 

by isotropic  fakir method. J Microsc 1998; 191: 201-211. 
Matérn B. Precision of area estimation: a numerical study. J Microsc 1989; 153: 269-284. 
Matheron G. Les variables regionalisees et leur estimation. Masson et cie, 1965. 



Matheron G. The theory of regionalized variables and its applications, Les Cahiers du 
Centre de Morphologie Mathématique de Fontainebleau, 1971. 

Mattfeldt T, Möbius H-J, Mall G. Orthogonal triplet probes: an efficient method for 
unbiased estimation of length and surface of objects with unknown orientation in 
space. J Microsc 1985; 139: 279-289. 

Meyer F. Mathematical morphology: from two dimensions to three dimensions. J. Microsc. 
1992; 165: 5-28. 

Moran PAP. Measuring the surface area of a convex body. Ann. Math. 1944; 45: 793-799. 
Moran PAP. Measuring the length of a curve. Biometrika 1966; 53: 359-364. 
Sandau K. How to estimate the area of a surface using a spatial grid. Acta Stereol 1987; 6: 

31-36. 
 

ACKNOWLEDGEMENT 
 
The work was supported by the Grant Agency of the Academy of Sciences CR (grant No. 
A5011810) and the Grant Agency of the Czech Republic ( grant No. 201/99/0269 ). 

APPENDIX A 

Measurement of the k-dimensional volume of the grid inside the body K can be 
expressed as integration of the measure μ. The measure with periods in uZd is defined by 
its Fourier coefficients cξ : 

( ) ( )est K d xd
K

ν μ= ∫ , ( ) ( )∑
−∈ξ

ξπ
ξ≈μ

d1Zu

xi2ecx  , c0 1=  

The variance of a grid estimator can be decomposed to the variance due to orientation of 
the grid (equal to 0 for volume estimators) and the residual variance. According to the 
Parseval identity the residual variance can be calculated as: 
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where ( ) ( )∫ ξπ−=ξχ
K

xi2
K dxe)  is the Fourier transform of the body K and cξ are Fourier 

coefficients of the grid. Let the body K is a sphere BR with radius R, its Fourier transform 
can be calculated from Poisson identity: 

( ) ( ) ( )ξπξ=ξχ R2JR 2d
2d
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)  

Using the asymptotic expansion of the Bessel function J: 

( ) ( ) ( )( ) ( )( )1o41dzcosz2zJ 2d +π+−π=  

we obtain the trend term in the asymptotic expansion of variance for simple spatial grids 
for u tending to 0: 
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so the coefficient Cd,k can be calculated as 
( ) ( )1d

4
2dC kd22dk,d +Ζ
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where Ζd-k Epstein zeta function corresponding to regular d-k dimensional orthogonal grid. 
Values of C1,0, C2,1, C3,2, C2,0, C3,1 and C4,0 were calculated using following formulas 
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where Γ is Euler gamma function, ζ is Riemann zeta function and L Dirichlet function 
(Kendall, 1948). The value of C3,0 was calculated by direct summing for small values of 
points ξ ( |ξ|<100 ) and approximating the remainder of the sum by an integral. 

APPENDIX B 

Let the surface with area S is projected into a rose of directions. Let the distribution 
function of angles between normals to the surface be F(ψ) and the distribution function of 
angles between directions of the projection directions be G(χ). The variance of estimate of 
the surface from the weighted average of areas of total projections can now be evaluated 
by double integration of the kernel Kd: 
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where ( )12d2d
d +Γπ=κ  is the volume of the unit ball in Rd, x, y, u, v any unit vectors 

from Rd such that ∠(y,u)=ψ, ∠(x,v)=χ 

with respect to the distributions: 
( ) ∫ ∫ χψχψ= )(dG)(dF),(KSSestvar d
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The special case of χ=0 can be easily calculated: 
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which makes it possible to calculate the coefficient of variance of the Cauchy formula for 
projection of either a flat hypersurface (F(ψ) is one-point distribution) into the rose of 
directions or of a hypersurface into a single hyperplane (G(χ) is one-point distribution). 
Flat hypersurface has the highest coefficient of variance of estimation of all hypersurfaces. 

APPENDIX C 

The variance of sphere surface area estimation and its asymptotic expansion using 
triple orthogonal grids of lines (SG, OTFSP) can be calculated by formulas using Fourier 
transform of the grids, similar to those in appendix A. 
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Let i, j, k=1..∞, then: c(±i, ±j, ±k)=0, |c(±i, ±j,0)|2=|c(±i,0, ±k)| 2=|c(0, ±j, ±k)| 2=1/9 

|c(±2i,0,0)|2=|c(0, ±2j,0)|2=|c(0,0, ±2k)|2=4/9 for both SG and OTSFP  

|c(±(2i-1),0,0)|2=|c(0, ±(2j-1),0)|2=|c(0,0, ±(2k-1))|2=4/9 for SG  and =0 for OTSFP.  
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